Rhapsody

IBM® Rational® Rhapsody®

IBM Rational Rhapsody Reference Workflow Guide

Version 1.10

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into
any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of the copyright owner, BTC Embedded
Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems AG
assumes no responsibility for any errors which may appear herein. No warranties, either expressed or

implied, are made regarding IBM Rational Rhapsody software including documentation and its fitness for
any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody® Automatic Test Generation Add On, and IBM®
Rational® Rhapsody® TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of their
respective owners.

© Copyright 2000-2016 BTC Embedded Systems AG. All rights reserved.

Table of Contents

L INTFOAUCTION o 4
2 Application of thisS DOCUMENTccciiiiiiiiiiiiiiiiiieeeeeeeeee e 6
3 IBM Rational Rhapsody Reference Workflowcccoeeeiiiiiiiiiiiiiiiieeeeeeee, 7
3.1 General CONSIAEIALIONSuuuuuiieee e et e e e e et e e e e e e e eeeeaaa e e e eeeaeeeeenes 7
3.2 Tool Qualification Requirements for IBM Rational Rhapsodyccceeeeeeine 8
3.2.11S0O 26262: Tool Confidence Level and Tool Qualification......................... 9
3.2.2 IEC 61508 Edition 2.0: Tool Classification and Tool Qualification 12
3.2.3 IEC 62304 Edition 1.0: Tool Qualificationcccvveeeeiiiiiiieeeiiiie e, 13
3.2.4 EN 50128: Tool QUAlfICAtioNccoveeiiiiiiiiiiiiiie e 13

3.3 Variation of the IBM Rational Rhapsody Reference Workflow 13
4 IBM Rational Rhapsody Reference Workflow Activities in more Detail 15
4.1 General CONSIAEIALIONSuiieeeeeieeeeiiiie e e et e e e e e e e e e e e e e e eeeannn s 15
4.2 Requirements Traceabilityooouuiiiiiiii e 16
4.3 MOAEING .o 18
4.4 Modeling Guidelines and Guideline Checking..........cc.ccovvvvviiiiiiiiieeeeceeein, 18
4.5 MOl VETIFICALIONuviiiiiiiiii e e e e et e e eaeeees 18
4.5.1 Model Simulation (MiL SIMUIation)...............euuueemmimiiieiiiiiiiiiis 18
4.5.2 Requirements Based TeStiNG........ccovrviiiiiiiiiee e 20
4.5.3 REQUIrEMENES COVEIAJEuuvuuuueriiiiiiiiiiiiiiiiiiiieeieesaaesaebeenneeebeeeeeeeneeaaannaee 22
R N1V [0 (=] W 0)Y =T = o = T 22

4.6 Code Generation and IBM Rational Rhapsody Frameworksccc.eo... 23
4.7 Coding Guidelines and Guideline Checking..........cccooeieeeiiiiiiiiiiiiiiieeeeeeeen, 26
4.8 Code Verification (SiL and PiL Verification)cccoooeeiiiiiiiiiiiiieeeeeeeeen, 26
4.8.1 Back-t0-Back TeSHNG.......ccovuiiiiiii e e 26
I O To [O 0 YT =T RN 28

5 Mapping Reference Workflow Activities to Safety Standardsccc...... 30
B5.LISO 26262.....ccceeiiiieeiee ettt e e e e e e e aaaae s 30
I | O G 1 01 34
B.BTEC B2304 ...ttt ettt e e e e e e e e n e aaaae s 35

SAENSOL28o eanae 39

1 Introduction

This document focuses on the model-based development (MBD) with IBM Rational
Rhapsody in safety-related projects. Model-based development is widely accepted as a
proven method to cope with the rapidly growing complexity of developing systems and
software. MBD can improve delivery of products with higher quality by also incorporating
complementary model-based testing (MBT) methods. MBD includes -- but is not limited to
-- modeling, simulation, traceability information, automatic code generation, model testing,
model-based code testing, model coverage and code coverage measurement, and report
generation.

When using MBD and MBT for developing safety-related software additional quality
objectives have to be met in order to produce and deliver “safe” systems. The mentioned
additional quality objectives essentially depend on:

e a specific industrial domain where the product under development shall be

deployed,

e an appropriate safety standard that must be applied for a particular domain.
The scope of this document covers software that is developed according to IEC 61508 (1),
IEC 62304 (9), EN 50128 (10) or ISO 26262 (2). ISO 26262 was released in 2011 and is
becoming a commonly used safety standard in the Automotive industry for passenger
cars. Although 1ISO 26262 is mainly concerned with functional safety of
Electrical/Electronic systems, it provides a framework within which safety-related systems
based on other technologies can be considered. IEC 61508 Edition 2.0 was published in
2010 and is a commonly used standard for the development of electrical, electronic,
programmable electronic safety-related systems. IEC 62304 was released in 2006 for the
medical industry. An updated version of EN 50128 was published in 2012 and is a
commonly used standard for the development of Software for Railway Control and
Protection Systems. Such standards describe proven processes and methods for the
development of safety-related systems, provide guidelines and recommendations when
customizing process and methods to a specific customer process, describe how tools can
help develop and testing of software, and what it means to qualify tools for their use that
fulfills the additional requirements regarding functional safety. Although the safety
standards show many similarities in general, they do differ across the detailed aspects
they discuss. In particular they define different approaches to classify the product under
development in certain criticality classes. For instance, SIL* levels 1 — 4 are used in IEC
61508 and IEC 62304, while it is named ASIL? levels A - D in ISO 26262. It mainly
depends on such classifications to derive the concrete additional quality objectives that
have to be met in order to produce and deliver “safe” systems. The quality objectives to be
met become more demanding the stronger the criticality classification of the software and
also applies for the qualification of tools that are used.

While the above mentioned safety standards cover all aspects of planning, development,
release, and maintenance of safety-related products across life cycle phases, this
document focuses on the UML/SysML model-based development and testing of safety-
related software with IBM Rational Rhapsody including automatic code generation and
IBM Rational Rhapsody TestConductor Add On (3). To discuss the requirements, available

1 Safety Integrity Level
2 Automotive Safety Integrity Level

methods, solutions, and tools we use a so-called IBM Rational Rhapsody Reference
Workflow that is described in detail in section 3. The document IBM Rational Rhapsody
TestConductor Add On Reference Workflow Guide (4) describes in more detail the testing
aspects of the workflow.

In section 2 the application of this document for the development and testing of safety-
related software is described. Section 3 describes in detail the mentioned IBM Rational
Rhapsody Reference Workflow. Section 4 makes a walk-through the activities of the IBM
Rational Rhapsody Reference Workflow, from modeling to code generation to testing.
Section 5 provides a mapping of the workflow activities to IEC 61508, IEC 62304, EN
50128 and ISO 26262.

Besides the information in this document users can find more information about IBM
Rational Automotive and Medical solutions, IBM Rational Method Composer for process
definition and management including ISO 26262 and IEC 62304 process templates under:

“IBM Rational solutions for Medical"

“IBM Rational solutions for Automotive”

“IBM Rational Method Composer”

http://www.ibm.com/software/awdtools/rmc/
http://www.ibm.com/software/rational/solutions/electronics/medical/
http://www-01.ibm.com/software/rational/solutions/automotive/
http://www-01.ibm.com/software/rational/solutions/automotive/

2 Application of this Document

This document provides a reference workflow when using IBM Rational Rhapsody for the
development of safety-related software. The IBM Rational Rhapsody Reference Workflow
describes a set of development and testing activities accompanied by some guidelines and
recommendations. Users shall consider this reference workflow when documenting how
they implement the different activities and methods described here in their project specific
process. In particular they shall asses where and how their specific process deviates from
the IBM Rational Rhapsody Reference Workflow. It is mandatory to justify and document
any deviations, and how it is implemented in the customer process.

Section 5 contains a set of tables providing mappings from the IBM Rational Rhapsody
Reference Workflow to the recommended methods in ISO 26262-6, IEC 61508, EN 50128
and IEC 62304.

http://www-01.ibm.com/software/rational/solutions/automotive/

3 IBM Rational Rhapsody Reference Workflow

3.1 General Considerations

The IBM Rational Rhapsody Reference Workflow describes an approach for model-based
development including automatic code generation and model-based testing. Figure 1
shows the major activities in this reference workflow. The upper part of the workflow
describes activities to design and implement the software. The lower part of the workflow
describes activities to validate and verify the software. The approach addresses design
and implementation together with appropriate test and verification:

Textual requirements guide the development of a formal UML/SysML model, which
then is translated to code using code generation. Both refinement steps are
accompanied with appropriate guidelines and checks.

The refinement step from textual requirements to a model ready for code generation
is verified by performing systematic requirements based testing on the model level
leveraging model simulation using IBM Rational Rhapsody’s animation, also called
Model in the Loop (MiL) testing. The generated code, either automatic or manual or
a mixture of both, can be verified on a host computer by executing the same set of
test cases used during MiL, but without including IBM Rational Rhapsody’s
animation, also called Software in the Loop (SiL) testing, and then performing an
equivalence check of the test results (back-to-back testing) between MiL and SiL.
This can be complemented by executing the set of tests on the target processor,
also called Processor in the Loop (PiL) testing.

Test execution on model and code comes along with structural coverage
measurement to assess the completeness of the tests and to avoid including
unintended functionality. Requirements coverage is measured during execution of
the test cases.

Modeling guidelines and Coding guidelines and

guidelines checking guidelines checking
I
| Rational Rhapsody
| v
¥ Code Compile
Modeling generation Link i
Requirements > Model > SILtE » Object
code code
R
I 1 ~
i Requirements I‘. Back to back testing
| . e} .
i based testingw . bk LTSGR .
! e T [T --
| - =1 ——— S
Reoui q ” Structural coverage "= T Structural coverage
equirements coverage measurement o measurement
measurement
(model) (Code)

Figure 1. Activities of the IBM Rational Rhapsody Reference Workflow

The first step in the workflow is to translate given requirements into an executable model
using appropriate modeling guidelines. Model-based tests are then added in order to
ensure that the model indeed correctly captures the requirements. Coverage metrics
(requirements coverage and model coverage) can measure the completeness of the
model-based test suite. Code generation, either automatic or manual or a mixture of both,
is used to generate an implementation from the model. Back-to-back testing between the
model and code constitute the key element for code verification. Running a test suite on
both levels verifies that the model and code show equivalent behavior. Code coverage
metrics are used in order to ensure completeness of the test suite with regard to the
predefined code coverage criteria.

In section (4) we make a walk-through the workflow diagram describing the construction
and verification/validation of the software. Testing of models and software is discussed in
even more detail in (4.5).

3.2 Tool Qualification Requirements for IBM Rational Rhapsody

When tools shall be used for the development and testing of safety-related software it is
mandatory to qualify the tools or individual features of tools. The qualification depends on
the concrete safety standard that is applied, the criticality level of the software under
development, and how much risk is introduced into a process by using a tool or a feature

“The objective of the qualification of software tools is to provide evidence of software tool
suitability for use when developing a safety-related item or element, such that confidence
can be achieved in the correct execution of activities and tasks required by ISO 26262.“
(ISO 26262-8, section 11.1)

When going through the process of tool qualification several risk assessment steps have
to be performed:
1. analyze how a Software Tool or a tool feature is used within a user process (“‘use
case and tool impact”)
2. analyze if errors and malfunctions of the tool or feature would be detected in such
process (“tool error detection mechanisms”)
3. choose an appropriate tool qualification method depending on (1), (2) and the ASIL
or SIL level respectively.

3.2.11S0O 26262: Tool Confidence Level and Tool Qualification

ISO 26262, part 8, chapter 11, “Confidence in the use of software tools”
e provides criteria to determine the required level of confidence in a software tool.
» provides means for the qualification of a software tool.

Confidence is needed that the software tool effectively achieves the following goals:
= The risk of systematic faults in the developed product due to malfunctions of the
software tool leading to erroneous outputs is minimized.
= The development process is adequate with respect to compliance with ISO 26262 if
activities or tasks required by ISO 26262 rely on the correct functioning of the
software tool used.

To determine the required level of confidence in a software tool used within development
under the conditions mentioned above, the following criteria are evaluated:
= The possibility that the malfunctioning software tool and its corresponding
erroneous output can introduce or fail to detect errors in a safety-related item or
element being developed, and
= The confidence in preventing or detecting such errors in its corresponding output

The Tool Confidence Level (TCL) is based upon

= Impact of tool failure (TI)

= Level of Tool error detection (TD)
Eventually the TCL, when combined with the customer product ASIL, leads to methods for
tool qualification.

ISO 26262 describes the process as shown in Figure 2 below to determine the TCL.

ASIL

Qualification for
TCL 3

__m M Qualification for
TCL 2

Tool use case

__m + w_ No Qualification ‘
required

Tool Tool Tool
00|
Impact Error Confidence Tool Qualification

\ Detection

\ Level ;\
- 7

Figure 2: Process for Determining the Tool Confidence Level

Tool Impact = 2: the tool might have an impact on safety
Tool Error Detection = 2 or 3: errors and malfunctions are not detected with
sufficient confidence in a given process

e Tool Confidence Level = 2 or 3: Qualification of a tool or feature is needed

The concrete tool qualification requirements depend on the ASIL level of the customer
product under development.

The required software Tool Confidence Level shall be determined according to the
following table.

Tool Error Detection

TD1 TD2 TD2
Tool T1 TCL1 TCL1 TCL1
Impact T2 TCL1 TCL2 TCL3

Figure 3: Determining the Tool Confidence Level

Examples for tools and functions are:
* simulation
= automatic source code generation
= test specification
= test execution

Prevention or detection of errors can be accomplished through
e process steps
¢ redundancy in tasks or software tools,
¢ rationality checks within the software tool itself.

What does this mean for IBM Rational Rhapsody automatic code generation?

Since IBM Rational Rhapsody generated code will be part of the safety-related product it is
clear that there is a Tool Impact on safety (TI=2). If the customer process is defined that it
will prevent and/or detect errors and malfunctions with sufficient confidence then Tool
Error Detection is 1 (TD=1). According to ISO 26262-8 prevention or detection can be
accomplished through process steps, redundancy in tasks or software tools or by
rationality checks within the software tool itself. As an example, TD1 can be chosen for the
IBM Rational Rhapsody code generator functionality in case the produced source code is
systematically verified in accordance with ISO 26262. As another example, usage
guidelines can prevent malfunctions such as the incorrect or ambiguous interpretation of
code constructs by a compiler.

For IBM Rational Rhapsody code generation the Tool Confidence Level can be set to
TCL=1if TD1 can be achieved. The IBM Rational Rhapsody Reference Workflow as
described in this document can be used as a blue print to achieve TCL1. A software tool
classified at TCL1 needs no qualification methods. Hence, IBM Rational Rhapsody code

generation can be used without qualification.
~ AsLL

=

Tool use case

-
-

\/
,m m No Qualification
required
Tool L Tool
ot Confidence ificati
Impact Datection it Tool Qualification

Figure 4: TCL1 for IBM Rational Rhapsody

ISO 26262 also provides the information that verification can be automated with tools. For
instance the generated code can be verified with respect to the input model by applying
the method of back-to-back testing. IBM Rational Rhapsody TestConductor Add On can
be used to perform automated back-to-back testing in order to verify the generated source
code with respect to the IBM Rational Rhapsody model. For IBM Rational Rhapsody
TestConductor Add On the TCL must be set to TLC3 and qualification for IBM Rational
Rhapsody TestConductor Add On must be performed.

NS
Qualification for
TCL 3

Qualification for
TCL 2

m ! w No Qualification ‘
required

Tool

Tool Error Tool
Confidence i i
Impact Detection Tool Qualification y

Level

Figure 5: TCL3 for IBM Rational Rhapsody TestConductor Add On

3.2.2 IEC 61508 Edition 2.0: Tool Classification and Tool Qualification

IEC 61508-3:2010 (Edition 2.0) requires that an assessment shall be carried out for offline
support tools in classes T2 and T3 to determine the level of reliance placed on the tools,
and the potential failure mechanisms of the tools that may affect the executable software.
Where such failure mechanisms are identified, appropriate mitigation measures shall be
taken.

IBM Rational Rhapsody and also IBM Rational Rhapsody TestConductor Add On are
offline support tools in the context of IEC 61508 Edition 2.0. Tools in class T3 generate
outputs which can directly or indirectly contribute to the executable code of the safety-
related system. IBM Rational Rhapsody is such an example. Tools in class T2 supports
the test or verification of the design or executable code, where errors in the tool can fail to
reveal defects but cannot directly create errors in the executable software. IBM Rational
Rhapsody TestConductor Add On is a class T2 tool.

For tools in class T2, e.g. test and verification tools, it is recommended to perform a tool
validation as described in IEC 61508-3:2010, paragraph 7.4.4.7, in order to get evidence
that the tool conforms to its specification. When evidence is achieved the tool is qualified
for being used regarding functional safety projects.

For class T3 tools it is also recommended to perform a tool validation unless appropriate
risk mitigation measures are in place. Examples of such mitigation measures include:
avoiding known bugs, restricted use of the tool functionality, using diverse tools for the
same purpose, or checking the tool output. Checking the tool output can be a manual,
interactive process activity or an automated activity as feasible with the T2 test tool IBM
Rational Rhapsody TestConductor Add On.

As a consequence of the discussion above, IBM Rational Rhapsody code generation has
to be classified as a T3 offline support tool. Hence, either appropriate risk mitigation

measures are implemented in the process, or evidence must be created that the tool
conforms to its specification. The IBM Rational Rhapsody Reference Workflow as
described in this document can be used as a blue print to implement a process providing
appropriate risk mitigation measures for IBM Rational Rhapsody code generation. Hence,
IBM Rational Rhapsody code generation can be used without qualification or validation
respectively.

IBM Rational Rhapsody TestConductor Add On is a product to perform automated back-
to-back testing in order to verify the IBM Rational Rhapsody generated source code with
respect to the model. IBM Rational Rhapsody TestConductor Add On is a T2 test tool.
Hence, qualification for IBM Rational Rhapsody TestConductor Add On must be
performed, where validation of the software tool is a suitable method.

3.2.3 IEC 62304 Edition 1.0: Tool Qualification

IEC 62304 provides a framework of life cycle processes for the safe design and
maintenance of medical device software. IEC 62304 does not place specific requirements
on software tools, or on the qualification of tools. However, IEC 62304 advises that IEC
61508 can be looked to as a source of methods, tools and techniques that can be used to
implement the requirements in IEC 62304.

3.2.4 EN 50128: Tool Qualification

The requirements for software tools in EN 50128 as well as the tool qualification scheme
are the same as in IEC 61508 Edition 2.0.

3.3 Variation of the IBM Rational Rhapsody Reference Workflow

Beside the workflow in Figure 1 in practice sometimes the variation of the workflow in
Figure 6 is applied. The difference between the workflow in Figure 1 and Figure 6 is that
there is no explicit verification of the model (no MiL Simulation using IBM Rational
Rhapsody animation) regarding the given requirements.

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

| Rational Rhapsody
¥

v Code Compile
Requirements Modeling > Model generation N Source Link . Object
code code
" \ M
h o S, Requirements \‘\ Back to back testing

based testing
-"' e

~ -
- - Sema
- - -
.

———
Structural coverage
measurement

(Code)

Requirements coverage
measurement

Figure 6: Variation of the IBM Rational Rhapsody Reference Workflow without Model Verification

Without explicit model verification, the simplified workflow contains the following activities:

e Creation of a model based on the given requirements. The model is created with
respect to modeling guidelines. However, the model is not simulated using IBM
Rational Rhapsody animation or dynamically tested. There might be multiple
reasons for not performing animation based simulation or dynamic testing of the
model. For instance, the model may contain some target hardware specific parts
(e.g. some libraries only existing for the target hardware) that cannot be simulated
at all on the model level.

e The model is translated into source code, either by applying an automatic code
generator or manual or a mixture of both.

e The source code is compiled for SiL and/or PiL execution.

e Test Cases are created and executed on SiL and PiL level respectively. Back-to-
back testing can be performed regarding SiL and PiL to ensure correct functioning
even with target hardware, drivers, and operating system.

e Requirements coverage and code coverage is measured.

Although this variation of the IBM Rational Rhapsody Reference Workflow does not
contain an explicit verification of the model, the correctness of the model is still verified
indirectly by verifying the output of the automatic code generator on the code level by
running requirement based test cases. The drawback of such an indirect verification on the
code level is the fact that in case of errors the error analysis must be performed on the
code level and cannot be done on the model level directly. After the source of a problem is
identified on the code level, appropriate changes on the model level must be performed
that will eventually correct the problem on the code level. Lifting such a problem resolution
from the code level to the model level is sometimes not trivial and time consuming.
Nevertheless, also with such an indirect verification on the code level the generated code
can be thoroughly tested by performing a complete requirement based test. Code

coverage metrics give evidence that the generated code does not contain untested code
and the generated code is fully tested.

4 IBM Rational Rhapsody Reference Workflow Activities in
more Detail

In this section we describe the IBM Rational Rhapsody Reference Workflow activities
captured in Figure 1 and the variant captured in Figure 6. For each explicitly shown
workflow activity, how these activities can be realized with IBM Rational Rhapsody is
described. The following activities are considered:
e Requirements traceability: This topic is described in detail in section 4.2.
e Modeling: General Modeling with UML and SysML is out of scope of this document.
Section 4.3 points to other sources of information.
e Modeling guidelines and guideline checking: This topic is described in detail in
section 4.4,
e Model verification: This topic is described in detail in section 4.5.
Code generation and IBM Rational Rhapsody frameworks: This topic is described in
detail in section 4.6.
e Coding guidelines and guideline checking: This topic is described in detail in section
4.7.
e Code verification: This topic is described in detail in section 4.8.

4.1 General Considerations

In order to develop safety-related software according to IEC 61508 Edition 2.0, IEC 62304
Edition 1.0, EN 50128 or ISO 26262 a strict process should be followed. Such processes
demand many planning, construction, and verification activities during the specification,
architectural design, implementation, testing, and release phases. In the subsequent
sections we focus on the activities when doing modeling, code generation and
unit/integration testing with IBM Rational Rhapsody. IBM Rational Rhapsody is likely to be
used for many other activities as well, for instance requirement engineering, system
design, software architectural design, documentation, etc. Guidance for those activities is
beyond of the scope of this document. Guidance and best practices for those other
features and activities are described in the IBM Rational Rhapsody Help under_"IBM
Rational Rhapsody 8.1". More information for using Rhapsody for safety-related
development can be found in the IBM Rational Rhapsody Help under "Getting started:
Designing safety-critical applications with Rational Rhapsody".

Besides the information in this document users can find more information about IBM
Rational Automotive and Medical solutions, IBM Rational Method Composer for process
definition and management including 1SO 26262 and IEC 62304 process templates under:

“IBM Rational solutions for Medical"

“IBM Rational solutions for Automotive”

“IBM Rational Method Composer”

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.developing.doc/topics/rhp_c_dev_safety_critical_apps.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.developing.doc/topics/rhp_c_dev_safety_critical_apps.html
http://www.ibm.com/software/awdtools/rmc/
http://www.ibm.com/software/rational/solutions/electronics/medical/
http://www-01.ibm.com/software/rational/solutions/automotive/
http://www-01.ibm.com/software/rational/solutions/automotive/
http://www-01.ibm.com/software/rational/solutions/automotive/

4.2 Requirements Traceability

Requirements traceability means that requirements can be traced to derived elements like
modeling elements and finally into source code and also to test cases. Requirements
traceability is a key concept that shall ensure that

Each requirement can be traced to one or more derived artifact like model elements
and/or source code and test cases. This shall ensure that all requirements are
considered in subsequent development phases.

Each model artifact, the source code and test case can be traced back to one or
more requirement. This shall ensure that no unintended functionality is developed
for which no requirement exists.

Within IBM Rational Rhapsody, requirements traceability can be realized as follows:
1. Create or import requirements into IBM Rational Rhapsody: In order to be able to

link requirements to model elements and later to source code and to test cases, the
underlying requirements must exist in the IBM Rational Rhapsody model.
Requirements are usually created and managed outside of a IBM Rational
Rhapsody model, e.g. in requirements management tools like IBM Rational DOORS
or simply in text documents. In order to ensure requirements traceability to IBM
Rational Rhapsody elements and later to source code, these requirements must be
imported into IBM Rational Rhapsody. Importing requirements can either be done
manually or automatically. Manually importing requirements means that
requirements are created directly in IBM Rational Rhapsody, and traceability to the
requirements outside of IBM Rational Rhapsody is realized by specifying a
requirement ID that uniquely identifies one of the requirements. Alternatively,
requirements can also be created and linked automatically by using requirements
importing capabilities of IBM Rational Rhapsody. How to import requirements from
other tools is described in the IBM Rational Rhapsody Help under "Integrating IBM
Rational Rhapsody and Rational DOORS" and "Integrating IBM Rational Rhapsody

Gateway".

. After having created requirement elements in IBM Rational Rhapsody, one can link

requirements to model elements (system model, design model, test model, ..) by
using dependencies. Usually, the dependency is added to a model element that
was created due to a certain requirement, and the target of the dependency is that
requirement. Additonally, in order to specify that the dependency is added because
of traceability reasons, usually the stereotype <<trace>> is added to the
dependency.

Traceability from requirements to model elements: In order to verify that all
requirements can be traced to a model element and vice versa, one can use e.g.
the IBM Rational Rhapsody Gateway Add-On. How to use it in order to ensure
complete traceability from requirements to model elements and vice versa is
described in the IBM Rational Rhapsody Help under “Integrating IBM Rational
Rhapsody Gateway”.

Traceability from requirements to source code: in order to ensure traceability from
requirements to source code, IBM Rational Rhapsody provides a code generation
option allowing the generation of requirements as comments into the generated
source code. How to enable and use this code generation option is described in the
IBM Rational Rhapsody Help under ‘“Including requirements as comments in
generated code" and under “Including requirements as comments in statechart
code".

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_c_int_rhp_and_doors.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_c_int_rhp_and_doors.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_r_int_vendor_doc_gateway.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_r_int_vendor_doc_gateway.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_r_int_vendor_doc_gateway.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_r_int_vendor_doc_gateway.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_generated_code.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_generated_code.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_statechart_code.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_statechart_code.html

5. Users can use the requirements as comments in code capability to perform
systematic manual verification if all the generated source code can be traced back
to one or more requirements. The verification if all requirements are indeed
implemented into source code can be verified by performing requirements based
testing together with structural code coverage computation.

6. Traceability from test cases to requirements: the UML Testing Profile (5) provides
an element TestObjective that is essentially a dependency. It allows to link test
cases to requirements (6). TestObjective can also be used to link test cases to
design model elements.

4.3 Modeling

UML and SysML provide many concepts for modeling software architectures, software
designs and also the software behavior. Using these concepts is out of scope this
document. General information about modeling software architectures and software
designs with IBM Rational Rhapsody is described in the IBM Rational Rhapsody Help
under “Designing and modeling”.

4.4 Modeling Guidelines and Guideline Checking

For safety-related projects it is necessary to constrain the usage of available modeling
elements to those elements for which certifiable safety-related code can be generated. In
general IBM Rational Rhapsody provides many modeling elements for which source code
is generated (It is described in IBM Rational Rhapsody Help under “Generating code from
a IBM Rational Rhapsody model”. In some cases the generated source code is not
suitable to be used in safety-related projects, e.g. because the generated code is not
MISRA-C (7) or MISRA-C++ (8) compliant. Thus, if it is necessary that source code can be
generated that complies for instance to MISRA C/C++, such constructs should not be
used. Information about how to ensure that MISRA compliant code can be generated from
IBM Rational Rhapsody models can be found in IBM Rational Rhapsody Help under
“‘Enabling the generation of MISRA compliant code”.

In order to verify that no modeling elements are used for which generated source code
would not be compliant to MISRA and other guidelines, the IBM Rational Rhapsody check
model feature can be used. Information about how to use IBM Rational Rhapsody’s check
model feature for such purpose can be found in the IBM Rational Rhapsody Help under
“Checking the model®.

4.5 Model Verification

During model verification, the created IBM Rational Rhapsody model is verified against the
underlying requirements that form the basis of the model. The goal of this activity is to
make sure that the model behaves as it is specified in the underlying requirements.

4.5.1 Model Simulation (MiL Simulation)

Technically, model verification is typically achieved by model simulation using IBM
Rational Rhapsody animation, i.e. MiL Simulation. Model simulation can be done in IBM
Rational Rhapsody by defining a configuration that has instrumentation mode set to
“animation”. An example of such a configuration can be found in Figure 7.

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.nav.doc/topics/c_node_designing_modeling.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.misra.doc/topics/t_misra_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_dm_checking_model.html

= 0 C_Stopiis

- pmponents
J-2¥ StopWatchComp
-3 Configurations
-y StopWatchDebug

£ TNt
&£ PredefinedTypes (REF)
&5 PredefinedTypesC (REF)
&7 RequirementsPkg
&7 StoptiatchPhkg
&7 SystemPhkg
&5 TutarialPkg

H-0 Profiles

Figure 7: IBM Rational Rhapsody Configuration with instrumentation mode set to “Animation”. Such

Configuration : StopWatchDebug in Stop¥YatchComp

| General -Descriptian Initializatinn_; Settings | Checks | Relations | Tags || Properties

Director [C\Test i\Ahopseh? 836 arplesiCSample] . | [1Use Defauk
Libraries: [
Additional Sources: _-

Standard Headers: _'
Include Path:

[aEa

Instrurnentation

)

Instrumentation Mode: i.ﬁl‘-.nimation

whebify

[]web Enabling
Tirne M aodel (%) Real) Simulated
Statechart [mplementation; Reuzabla (%) Flat

Locate Ok

a configuration can be used in order to simulate the model.

When having a configuration that can be used for simulation, one can use IBM Rational
Rhapsody’s simulation and animation capabilities in order to simulate and animated the

model. During simulation, one can stimulate the model with inputs and one can monitor the

reaction of the model to the provided inputs. IBM Rational Rhapsody provides different
simulation views that can be used in order to understand and check the behavior of the

model. For instance, one can use animated statecharts or animated sequence diagrams in

order to verify the model’s behavior, and one can inspect the values of model variables
during simulation. An example of such a simulation run can be seen in Figure 8.

R IBM Rational Rhapsody Developer for C - C_StopWatch.rpy

File Edit View Code Layout Tools Whdow Hebp

IBERtEN LB €9 2AG X ||[|[REOEQ0x ¥ & |@60P0%LEE3303 |

[L) %lgl;ov_\/;:hém

v | StoghwatchDebug

v DEnE 88 e

Bt SRS ST, Al . TP R R
Entire Model View ~
= 4o C_StopWatch N
= Components
= g StopwatchComp
= [Configurations
+ & stopwatchDebug
= Packages
& [IntarfacePkg
£ PredefnedTypes (REF)
[PredefnedTypesC (REF)
£ RequirementsPkg

E3 Display

& Stopwatch
= 3 Timer

® (= atributes
& (2 Generalizations
& (= Instances

M Z |

4 = || ®@8atang { 7 B |

Animation 3]

PO P m ¢ l%&?«ff.‘

1= D 4L @

':Stamchan of : Timar .‘..ptéhwatch[()].itsS!opwatch.ilsTimer

Running

res&me);

pre_off

on

1‘ /
evaatstop |
tm(S00) /

L dapeseo
off Q
= show(me, m._..

colon

&)

1 & show(me, me->min, me->sec, TRUE),

tm{(500)

I

tr(500)/
Timer_tick{me);

nocolon

&

(& show(me, me->min, me->sec, FALSE),

Locate OK

1

l

Figure 8: By simulating the model, one can step through the behavior of the model, and one can
inspect values of model variables (e.g. values of attributes) during the simulation run.

Information about how IBM Rational Rhapsody models can be simulated by using
animated configurations can be found in the IBM Rational Rhapsody Help under “Running
animated models"”

4.5.2 Requirements Based Testing

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.animation.doc/topics/rhp_c_dm_rning_anm_models.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.animation.doc/topics/rhp_c_dm_rning_anm_models.html

Modeling guidelines and Coding guidelines and

““““““

guidelines checking guidelines checking
Rational Rhapsody
é C:de Compile
Requirements Modohee, Model generation | Source Link | Object
code code
i II Back to back testing \ b
i

Requirements
. -
based testingw

Requirements coverage
measurement

- .
Structural coverage =~ TTTo--._ Structural :\mrerage
measurement - measurement

(model) (Code)

Figure 9: Requirements based testing

In the previous section we described that model simulation can be used in order to verify
the correctness of the model. However, the user has to make sure that indeed each
underlying requirement has been tested through model simulation. This can be done e.g.
by systematically performing simulation MiL runs for each requirement as sketched in
Figure 9.

Another alternative is to use the IBM Rational Rhapsody TestConductor Add On. The IBM
Rational Rhapsody TestConductor Add On can be used to systematically test the correct
implementation of the underlying requirements. For that purpose, the IBM Rational
Rhapsody TestConductor Add On allows creating test cases for each requirement. By
automatically executing the created test cases, IBM Rational Rhapsody TestConductor
Add On can check the correctness of the behavior of the model with respect to the given
requirements. The behavior of the test cases can be described by means of different UML
diagrams or code. Additionally, in case of changes in the model all test cases can be
executed automatically in order to perform a complete regression test to check that no
errors were introduced by the changes. Details about how IBM Rational Rhapsody
TestConductor Add On can be used in order to perform requirements based testing of an
IBM Rational Rhapsody UML model is described in "IBM Rational Rhapsody
TestConductor Add On User Guide". Also, document IBM Rational Rhapsody
TestConductor Add On Reference Workflow Guide (4) describes in more detail the testing
aspects of the workflow.

http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf
http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf

4.5.3 Requirements Coverage

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

| Rational Rhapsody

i v

v Code Compile

. Modeling generation Link i
Requirements > Model > S > Object
code code

- o |
= based testing ¥ __ YT

- BT - "*-‘._____
. . Structural coverage @~ - ———
Requirements coverage ———
measurement
measurement
(model)

N N

I

i

! Requirements I Back to back testing :
I

i

I

.
+
.

Structural coverage
measurement

(Code)

Figure 10: Requirements coverage

In order to make sure that indeed all underlying requirements have been tested properly,
either by manual simulation or by specifying model based test cases with IBM Rational

h requirements have been
tested and which have not been tested so far (cf. Figure 10). If requirements are tested by
manual simulation, a simple protocol can be used that keeps track of which and when
certain requirements have been tested. If requirements are tested by model based test

for instance predefined
uctor Add On in order to
test cases. Information
about how this can be achieved with IBM Rational Rhapsody TestConductor Add On is

Rhapsody TestConductor Add On, one needs to keep track whic

cases with IBM Rational Rhapsody TestConductor, one can use
testing reports or testing matrices that are provided by TestCond
get an overview about which requirements were tested by which

described in "IBM Rational Rhapsody TestConductor Add On User Guide".

4.5.4 Model Coverage

http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf

Modeling guidelines and Coding guidelines and

guidelines checking guidelines checking
; Rational Rhapsody
i v
A Code Compile
Modeling generation Link :
Requirements » Model > SIIER > o
code code
i Regquirements I‘. Back to back testing h
i . -
i - based testing®. "y

\'\
Structural coverage N 00000000 7Tl Structural coverage

Requirements coverage
e g measurement measurement

measurement
(model) (Codé)

Figure 11: Model coverage

In section 4.5.3 we described how one can make sure that all underlying requirements are
indeed tested on the developed IBM Rational Rhapsody UML model, either by manual
simulation or by model based test cases. However, in order to make sure that all parts of
the model have been tested properly, one should augment the requirements coverage
information with model coverage information (cf. Figure 11).

In contrast to requirements coverage, model coverage measures which parts of the model
have been executed during simulation or testing. IBM Rational Rhapsody TestConductor
Add On provides capabilities in order to generate a model coverage report after test case
execution. With this capability one can check if indeed all model elements have been
executed by the model based test cases. Information about how to use this capability is
described in "IBM Rational Rhapsody TestConductor Add On User Guide".

4.6 Code Generation and IBM Rational Rhapsody Frameworks

UML and SysML provide many concepts for modeling software architectures, software
designs and also software behavior. With IBM Rational Rhapsody models can be
translated into executable code. Using the behavioral modeling concepts and the
automatic code generator is out of scope this document. General information about
software development with IBM Rational Rhapsody and especially about generating code
automatically from a software design model with IBM Rational Rhapsody is described in
the IBM Rational Rhapsody Help under “Developing”.

The generic code generation scheme of IBM Rational Rhapsody is depicted in Figure 12.
As one can see, IBM Rational Rhapsody generates the application source code for a
certain IBM Rational Rhapsody model. The generated source code itself uses a library
providing an execution framework. This execution framework provides implementations for
certain common functionality like timers, event handling, etc. By using this execution
framework library including its abstraction layer instead of real-time operating system
specific functions, the source code of the generated application is independent of a certain
RTOS. IBM Rational Rhapsody comes along with different implementations of this
execution framework for the various existing target architectures.

http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.nav.doc/topics/c_node_developing.html

General information about IBM Rational Rhapsody code generation can be found in the
IBM Rational Rhapsody Help under "Generating code from a IBM Rational Rhapsody
model".

éa)

Rhapsody RTOS Adapter

Rhapsody

model - Generated Application

OXF (Object eXecution Framework)

OS Abstraction Layer

RTOS

Figure 12: IBM Rational Rhapsody generated code uses the IBM Rational Rhapsody framework
library

In Figure 13 three different variants of the framework library are listed. The reason why
there are different versions of this framework library is that the different versions serve
different purposes. The standard Object eXecution Framework (OXF) library is used for
standard C and C++ code generation. When using this library, the IBM Rational Rhapsody
model can even be simulated. However, the library is large with lots of different features
that are not needed for safety-related production code. Thus, IBM Rational Rhapsody
provides two alternative libraries called Simplified eXecution Framework (SXF) and
Simplified MicroC eXecution Framework (SMXF).

oxk s lsww
Standard C and C++ Safety critical C++ Safety critical C

framework suitable framework for framework for
for simulation production code production code

Figure 13: Different IBM Rational Rhapsody framework libraries

The SXF library is the safety-related C++ framework library. It's a comprehensive C++
library that is suitable to be used in safety-related production C++ code environments. The

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html

C counterpart of the SXF library is the SMXF library. This is a comprehensive C library that
is suitable to be used in safety-related production C code environments.

In order to be able to generate C++ safety-related production code from a IBM Rational
Rhapsody model, the following setting needs to be defined:

1. The setting “SafetyCriticalForC++Developers” needs to be added to the model.

Setting “SafetyCriticalForC++Developers” also automatically loads the settings
‘MISRAC++” and “SXFC++” to the model. Note, when a new project is created it is
possible to pre-select “SafetyCriticalForC++Developers” as default setting. It adds all three
settings to the new project. This avoids adding the settings manually to an existing project.

”
New Project

Project name: - Project Entire Model View w

I fokder. C:\tmphProject | Browse.. | = m
| Profect Type (Datenk - #-J Components

) Object Model Diagrams

Projact Setlings: Diefandt -

CodeCenlnc752Cpp
e aulk

Packages
=+ Settings
{£5) MISRAC+ + (REF)
i3] SafetyCriticalForC++Developers (REF)
4153 SXFC++ (REF)

b
SHFCa+

| 0K] Cancel | | Hep

Figure 14: Creating a new model with safety-related settings

In order to be able to generate C safety-related production code from a IBM Rational
Rhapsody model, the following setting need to be defined:

1. The setting “SafetyCriticalForCDevelopers” needs to be added to the model.

Setting “SafetyCriticalForCDevelopers” also automatically loads the setting “MicroC” to the
model. Note, when a new project is created it is possible to pre-select
“SafetyCriticalForCDevelopers” as default setting. It adds both settings to the new project.
This avoids adding the settings manually to an existing project. A precondition is to select
“MicroC” as project type before the setting can be selected.

Information about how settings can be added to a IBM Rational Rhapsody model can be
found in the IBM Rational Rhapsody Help under “Project settings”.
More information about SXF framework and SMXF framework can be found under:

o "Simplified C++ execution framework (SXF)"
e "Simplified C execution framework (SMXF)"

Besides adding the right profiles and/or settings to the model, the code generation
configurations that are used in order to generate code for the model must be attached with
certain stereotypes. Details about which stereotypes must be used in order to use SXF
framework or SMXF framework respectively can also be found in the IBM Rational
Rhapsody SXF and SMXF help.

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.uml.diagrams.doc/topics/rhp_r_ref_projectsettings.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.frameworks.doc/topics/rhp_c_fw_sxf_framework.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.microc.doc/topics/r_mxf_c.html

In order to be able using the SXF or SMXF for safety-related developments it is needed to
do a systematic qualification of the simplified frameworks. The SXF and SMXF come
equipped with validation suites containing:

e Test cases to verify functional correctness of the SXF/SXMF functionality

e Code coverage report after execution of the requirements based test suite

e Requirements coverage report using ReporterPlus. All framework classes and

operations are traced to requirements

e MISRA compliance statements
By executing the proper validation suite it can be verified that the chosen framework is fit
for its purpose.

4.7 Coding Guidelines and Guideline Checking

For safety-related applications, it is important that the generated code conforms to certain
rules that are important for safety-related applications. For C, the MISRA standard is an
important coding standard. In order to make sure that the IBM Rational Rhapsody
generated code conforms to the MISRA standard, the setting
“SafetyCriticalForCDevelopers” needs to be added to the IBM Rational Rhapsody model.
This setting ensures that the design model can be refined into MISRA C compliant code.

For C++, the MISRAC++ standard is an important coding standard. In order to make sure
that the code IBM Rational Rhapsody generates conforms to the MISRAC++ standard, the
profile “MISRAC++” needs to be added to the IBM Rational Rhapsody model. This profile
ensures that the design model can be refined into MISRA C++ compliant code.

Commercially off the shelf tools are available to automatically verify if MISRA or
MISRAC++ rules are violated in the developed code.

Additionally, please follow the rules described in section 4.4.

4.8 Code Verification (SiL and PiL Verification)

For safety-related applications, it is important that the generated code is thoroughly
verified. It must be verified that the code correctly implements the requirements. An
essential activity in the context of the IBM Rational Rhapsody reference workflow is the
verification of the model against the requirements including model coverage computation.
Since the IBM Rational Rhapsody code generation translates a model into source code it
has to be verified that the translation is correct. Back-to-back testing is the technique used
to demonstrate the equivalence between the model behavior and the code running on the
host (SiL testing) or even on the target hardware (PiL testing). Code coverage metrics give
evidence that the generated code does not contain untested code and the generated code
is fully tested.

4.8.1 Back-to-Back Testing

As described in section 4.6, IBM Rational Rhapsody provides different frameworks and
code generation settings for different purposes. Usually, for simulating the model, an IBM
Rational Rhapsody code generation configuration is used with settings appropriate for
model simulation, among others

e OXF standard framework is used (cf. section 4.6)
e Animation instrumentation is enabled

The final production source code must not contain elements like animation instrumentation
code. Thus, IBM Rational Rhapsody users usually create different code generation
configurations for different purposes. In many cases, one distinguishes three different code
generation settings called MiL, SiL, and PiL (cf. Figure 15).

= [Py TPkg_StopWatch
= .0 Components SIL
= & TPkg_StopWatch_Comp
= Configurations
$3 «TestingConfiguration» HostConfig
% «TestingConfigurations ModeiCon fi—| MIL

et

& «TestingConfiguration» TargetConfig

(> Dependencies

+ 27 Hyperlinks PIL
*

= Tags

T

il
¥

Figure 15: Different code generation configurations (MiL, SiL, and PiL)

MiL (Model in the loop) is a code generation configuration that is used in order to simulate
the model with animation. The MiL configuration contains settings suitable for simulating
the model. SiL (Software in the loop) is a code generation configuration that is used for
generating source code that shall be compiled and executed on the host system, but does
not contain any instrumentation code. The intention is to generate code that can be
executed and tested on the host system, e.g. by using a cross compiler and an emulator.
PiL (Processor in the loop) is a code generation configuration that is used in order to
generate source code for the target processor.

Now, an important verification step is to check if the code generated by these different
configurations shows equivalent behavior. This is mandatory in order to make sure that
model verification results from simulation runs are preserved when executing the source
code generated for SiL and PiL configurations. If there are significant deviations in the
behavior observed for MiL compared to e.g. SiL it means that the model does not behave
as the source code generated for SiL. If these deviations are not detected, errors might
show up in the final production code although they are not observable during model
simulation.

Modeling guidelines and Coding guidelines and

guidelines checking guidelines checking
| Rational Rhapsody
| v
v Code Compile
Modeling generation Link i
Requirements > Model > SITEEE > Object
code code

N
II \ -
Requirements «] Back to back testing J ",
- T -— ! ",
= based testingw_. —~TTiv---

~ -
e T -

B TR

= 3
Structural coverage - Structural coverage

Requirements coverage ~ —oocwmlcoverage el _
measurement measurement
measurement
(model) (Code)

Figure 16: Back-to-back testing

In order to detect such deviations, the behavior of MiL configurations must be compared
with the behavior of SiL and PiL configurations (cf. Figure 16). In order to perform such
verification one can either do a manual testing and comparison or one can use a tool like
IBM Rational Rhapsody TestConductor Add On that can automate back-to-back testing
activities. More information about back-to-back testing with IBM Rational Rhapsody
TestConductor Add On can be found in (6).

4.8.2 Code Coverage

In section 4.5.2 we have described that it is essential to systematically verify the
correctness of the model with respect to the underlying requirements by using model
simulation. Furthermore, in section 4.5.4 we have described that also exhaustive coverage
of the model by using model simulation runs is needed. This provides evidence that all
underlying requirements are correctly implemented by the model, and also that no
unintended functionality is realized in the model without having a requirement for such a
model part.

Modeling guidelines and Coding guidelines and

guidelines checking guidelines checking

| Rational Rhapsody

| ¥

¥ Code Compile

Modeling generation Link :
Requirements > Model > SILtE > Object
code code

i Requirements I‘. Back to back testing)
| . o
i v based testingw.. —TYtee-o

. i
Structural coverage ~e
measurement

(model)

3
Structural coverage
measurement

(Code)

-
Requirements coverage
measurement

Figure 17: Code coverage

Now, if we look at the generated source code, an equivalent procedure is needed that
checks if the generated source code does not contain unintended or untested functionality
(cf. Figure 17). In order to do that usually source code coverage tools are applied that
measure which part of the source code are executed during SiL and PiL test runs. Many
tools exist that can compute and report code coverage statistics for code execution runs.
When using IBM Rational Rhapsody TestConductor Add On, code coverage measurement
can be easily combined with the Back-to-back testing approach described in section 4.8.1.
More information about code coverage measurement with IBM Rational Rhapsody
TestConductor Add On can be found in (6).

5 Mapping Reference Workflow Activities to Safety
Standards

5.11S0 26262

Figure 18 below shows the ISO 262626-6 software development reference process.

6-5 Initiation of product development
at the software level

6-6 Specification € 6-11 Verification
of software S 42 Requirements [_____.---- > of software safety
requirements e --- traceability - requirements
g
oy, Pid I il S o
g & | =Y E
= K =
=3 6-10 Softw: <
?F’ 6-7 Software - ' . .0 vare &
a architectural design H T mtegram.m and P
H Y testing
e ," ,; | s
A v \
4.3 Modeling\ .
/ e 6-9 Software unit |
i design and s \
M 7 implementation ' estng Aoh '
4.4 Modeling guidelines and ~ A
guideline checking ' - \

4.6 Code generation
4.7 Coding guidelines and
guideline checking

4_8\ Code ver;flcation
Figure 18: Overview of 1ISO 26262 software development reference process

Figure 19 below provides an overview about the mapping between the ISO 262626-6

software development reference process phases to the workflow activities of the IBM
Rational Rhapsody Reference Workflow.

Software 150 26262-6 ASIL ASIL ASIL ASIL Workflow Model Level Code Level
Development A B C D Reference
Subphase
Initiation of Table I - Topics io be + + + Guidelines for * MISRA C: 2004 guidelines * MISRA C: 2004 guidelines
product covered by modelling modelling and coding [+ MISRA C++ 2008 guidelines |+ MISRA C++ 2008 guidelines
development at |and coding guidelines and guideline checking |+ IBM Rational Rhapsody: + IBM Rational Rhapsody:
the software 1a Enforcement of low (Section 4.4, 4.7) Enabling the generation of Simplified C execution
level complexity MISRA compliant code framework (SMXF)
1b Use of language + + + IBM Rational Rhapsody: + IBM Rational Rhapsody:
subsets SafetyCriticalForCDevelopers | Simplified C++ execution
1c Enforcement of strong| + + setting framework (SXF)
tvping + IBM Rational Rhapsody: * 3rd party tools for guideline
1d Use of defensive o + + SafetyCriticalF orC++Developers |checking on code level
implemantation setting
techniques + IBM Rational Rhapsody:
le Use of established Checking the model
design principles
1f Use of umambiguous + + + +
|graphical representation
1g Use of style guides + +H +H +H
1h Use of naming + + +
conventions

Software
Architectural
Design

Table 2 Notations for
software architectural
design

1a Informal notations

1b Semi-formal notations

1c Formal notations

Modelling (Software
architectural design;
Section 4.3)

» Using IBM Rational Rhapsody
for creating a software
architectural design model

Table 3 - Principles for
software architectural
design

1a Hierarchical Structure
of software components

1b Restricted Size of
software components

1c Restricted Size of
interfaces

1d High cohesion within
each software
component

1e Restricted coupling
between software
components

1f Appropriate
scheduling properties

1g Restricted use of
interrupts

Modelling (Software
architectural design:
Section 4.3)

» IBM Rational Rhapsody
TUML/SysML provides all
needed concepts

« IBM Rational Rhapsody
provides a tool to measure
TUML/SysML model complexity

» IBM Rational Rhapsody
UML/SysML provides all
needed concepts

« IBM Rational Rhapsody
provide all needed concepts to
generate code matching the
principles

Table 4 - Mechanisms
\for error detection at
the software
architectural level

1a Range checks of input
and output data

1b Plausibility check

1c Detection of data
errors

1d External monitoring
facility

1e Control flow
meonitoring

1f Diverse software
design

Table 5 - Mechanisms
\for error handling at
the software
architectural level

1a Static recovery
mechanism

1b Graceful degradation

1c Independent paraflel
redundancy

1d Correcting codes for
data

Table 6 - Methods for
the verification of
software architectural
design

1a Walk-through of the
design

1b Inspection of the
design

Requirements
traceability and
requirements coverage|
measurement (Section
42,453)

= IBM Rational Rhapsody
UML/SysML provides all
needed concepts to establish,
report and verify requirements
traceability

= IBM Rational Rhapsody
provides features supporting the
process of verification and
validation including traceability
from requirements to model to
code to test cases

1c Simulation of dynamic
parts of the design

Requirements-based
testing (Software
architectural design;
Section 4.5.2)

» IBM Rational Rhapsody MIL
simulation
= IBM Rational Rhapsody SIL
simulation

1d Prototype generation

1e Formal verification

1f Control flow analysis

1g Data flow analysis

Software Unit
Design and Imple
mentation

Table 7 - Notations for
sefiware unit design
la Natural language

1b Informal notations

lc Semi-formal notations

Modelling (Software
unit; Section 4.6)

» IBM Rational Rhapsody
software unit implementation
model

1d Formal notations

Table & - Design
|principles for software
unit design and
implementation

1a One entry and one
exit point in subprograms
and functions

1b No dynamic objects or
variables, or else online
test during their creation

1c Initialization of
variables

1d No multiple use of
variable names

le Avoid global variables
or else justify their usage

1f Limited use of pomters,

1g No implicit type
conversions

1h No hidden data flow
or control flow

1i No unconditional jumps,

1j No recursions

Table ¢ - Methods for
the verification of
software unit design
and implementation
1a Walk-through

1b Inspection

R equirements
traceability and
requirements coverage
measurement (Section
42,4.5.3)

« IBM Rational Rhapsody
UML/SysML provides all
needed concepts to establish.
report and venfy requirements
traceability

* IBM Rational Rhapsody
provides features supporting the
process of verification and
validation including traceability
from requirements to model to
code to test cases

1c Semi-formal
verification

R equirements-based
testing (Software unit
design; Section 4.5.2)

« IBM Rational Rhapsody MIL
and/or SIL simulation

+ IBM Rational Rhapsody SIL
simulation

1d Formal verification

le Control flow analyses

1f Data flow analysis

1g Static code analysis

1h Semantic code
analysis

Software unit
testing

Table 10 - Methods for
soffware unit testing
1a Reguirements-based
test

1b Interface test

1c Fault mjection test

1d Ressource usage test

Requirements-based
testing (Software unit
implementation;
Section 4.5.2)

» IBM Rational Rhapsody
TestConductor AddOn provides
all needed concepts for test case
specification, execution and test
management

+ IBM Rational Rhapsody
TestConductor AddOn supports
SIL and PIL testing

1e Back-to-back
comparison test between
model and code. if

applicable

Back-to-back testing
(Section 4.8.1)

* IBM Rational Rhapsody
TestConductor AddOn supports
back-to-back testing MIL <->

SIL

+ IBM Rational Rhapsody
TestConductor AddOn supports
back-to-back testing SIL <->

PIL

Table 11 — Methods for
deriving test cases for
software unit testing

1a Analysis of
requirements

1b Generation and
analysis of equivalence
classes

1c Analysis of boundary
values

Requirements-based testing (Software unit implementation; Section 4.5.2)

1d Error guessing

Table 12 — Structural
coverage metrics ar the
software unit level

1a Statement coverage

1b Branch coverage

1c MC/DC (Modified
ConditionDecision
Coverage)

Structural coverage
measurement for
model and/or code
(Section 4.5.4, 4.8.2)

» IBM Rational Rhapsody
TestConductor AddOn model
coverage

+» IBM Rational Rhapsody
TestConductor AddOn code
coverage

Software
integration and
testing

Table 13 - Methods for
software integration
festing

1a Requirements-based
test

1b Interface test

Requirements-based
testing (Software
integration: Section
4.52)

» IBM Rational Rhapsody
TestConductor AddOn provides
all needed concepts for test case
specification, execution and test
management

+* IBM Rational Rhapsody
TestConductor AddOn supports
SIL and PIL testing

1c Fault mjection test

1d Resource usage test

le Back-to-back
comparison test between
model and code, if
applicable

Back-to-back testing
(Section 4.8.1)

« IBM Rational Rhapsody
TestConductor AddOn supports
back-to-back testing MIL <->
SIL

+* IBM Rational Rhapsody
TestConductor AddOn supports
back-to-back testing SIL <->
PIL

Table 14- Methods for
deriving test cases for
software integration
testing

1a Analyses of
requirements

Requirements-based testing (Software integration: Section 4.5.2)

1b Generation and
analysis of equivalence
classes

lc Analysis of boundary
values

1d Error guessing

Table 15 — Structural
coverage metrics at the
sofiware architectural
level

1a Function coverage

Structural coverage
measurement for
model and/or code

1b Call coverage

+ IBM Rational Rhapsody
TestConductor AddOn model
coverage

+ IBM Rational Rhapsody
TestConductor AddOn code
coverage

Figure 19: ISO 26262 mapping to the Rhapsody Reference Workflow

5.2 [EC 61508

The mapping between IEC 61508 and the IBM Rational Rhapsody Reference Workflow
will be provided in future versions of this document.

5.8 Software release

5.3 IEC 62304
Figure 20 below shows the IEC 62304 software development reference process.

5.1 Software development planning
5.2 Softw €
- Sotware . 5.7 Software
requirements o 4.2 Requirements [el .
. - . B system testing
analysis - traceability
. ‘:“ \l /:‘\
53 SOﬂwm. ; 5.6 Software g
architectural design |, / int i d =
5.4 Software - Imfegration any &
il s integration testing
:'; A
v Y ‘
5.5 Software unit 5.5 Software unit
implementation ' verification F
i 4.8 Code verification
b

4.6 Code generation

4.7 Coding guidelines and
guideline checking

4.4 Modeling guidelines and -
Figure 20: Overview of IEC 62304 software development reference process

guideline checking

Figure 21 below provides an overview about the mapping between the IEC 62304 software
development reference process phases to the workflow activities of the IBM Rational

Rhapsody Reference Workflow.

Sohware
Development
Subphase

IEC 62304

Class A

Class B

ClassC

Workflow
Reference

Model Level

Code Level

5.15oftware
Development
Planning

E. 1 1 Sofrware Decelopment Flan
T ofan shal adahess the folowing

a)the PROCESSES o be usedin the
development of the SOFT'W/ARE SvSTEM

b)the DELIVERABLES (includes
documentation] of the ACTIVITES and TASKS

o) TRACEABILITY between SYSTEM
requirements, saftware requirements,
SOFTWARE SYSTEMtest, and RISK CONTROL
measures implemented in saftware;

d) softw are canfigurstion and change
management, including SOUP
CONFIGURATION ITEMS and

elsofte are problem resolution for handling
problemsz detected in the SOFTWARE
PRODUCTS,

DELIVERABLES and ACTIVITIES at each stage

T 12 Reep software development
plan updated

The MANLUFACTURER shall update the plan as
development proceeds as appropriate.

5 1.7 Software development glan
reterence ta SYSTEM design and

development

=] Az inputs For softw are development, STSTEM
requirements shall be referencedinthe
softw are development plan by the

MAKNUFACTURER,

b) The MANUF ACTIURER shallinclude or
reference in the software development plan
procedures for coordinating the softw are
development and the design and development
validation necessary ta satisfy 4.1

5 1 4 Softwars development
standards. methods and ook

phsnning

The MANLFACTURER shallinclude or reference
in the softw are development plan;

a) standards,

b)methods, and

cltools

associated with the development of SOFTWARE
ITEMS of class C

5 L5 Sofeware fntegration and
ffegratian festing plannig

The MANUFACTURER shallinclude or reference
inthe softw are development plan, aplan to
integrate the SOFTWARE ITEMS lincluding
SOUP) and perform testing during integration

5 1 & Saftwars VERIFICATION
planaing The MAAFACTLRER hat
Al o ARSI i M e ana
drcaiameantoian she faliaving
EERRRICA T indarmasion:

) DELIVERAELES requiring WERIFICATION;

bl the required VERIFICATION TASKS for each
life cucle ACTIMITY,

Ed e

Ed e

ol milestones at which the DELIVERABLES are
VERIFIED; and

dthe acoeptance oriteria for VERIFICATION of
the DELIVERABLES.
softw are used to suppon development; and

5. L F Safiware FESK MANSGEMENT

phsnning

The MANUFACTURER shallinclude or reference
inthe softw are development plan, a plan to
conduct the ACTVITIES and TASKS of the
saftw sre RISK MAMAGEMENT PROCESS,
including the management of RISKS relating to

SOUP.

515

a) title, name or naming convention;

Foaroach idenufiad dacament or fupe of
wacrmant the folonig ivoemaiion shalfbs
sskadindor rafanansast

bl purpose:

clintended audience of document; and

dl procedures and tesponsibilties for
development, review, approval and modification.

2|

303|230

|||

5. 1.5 Softears configuration
Pl

Fus sofwans

althe classes, wpes, categories or lists of items
to be controll=d;

b3

B3

=

CAVEREHANT MIRIPATRA foamation shak

b the softw are configuration management.
ACTIITIES snd TASKS:

oI the organizationls) responsible for performing
softw sre configuration management and

ACTMITES;

d)their relationship with other organizations,
such as software development or maintenance;

&) when the items are to be placed under
conliguration control; and

fIwhen the problem resalution PROCESS is o

be used

controffed

5 1 I} Supparting fems to be

The items to be controlled shallinclude tasls,
items or settings, used to develop the MEDICAL
DEVICE SOFT'WARE, which sould impact the
MEDICAL DEVICE SOFTWARE.

51 1 Softeare COMPIGLRA TION
IFEM cantral before VERIFICATION

The MANUFACTURER shall plan to place
COMFIGURATION ITEMS under dacumented
configuration

management control before they are YERIFIED.

5.2 Software
requirements
analysis

reqairemants

52 } Beline and docament saftwars
regquirements from SYSTEM

Far each SOFTWARE SYSTEM of the MEDICAL
DEVICE, the MANUFACTIURER shall define and
dacument SOFTWARE SYSTEM requirements
from the SYSTEM level requirements.

cantent

As

5.2 2 Softeare requirements

4

MMELRE R DREEHEE SR T A, olae
MAARLIERE TEARER shall inskata da dhe
SN 203 PRI

a) functional and capability requirements;

b3

B3

=

bl SOFTWARE S STEM inputs and outputs;

b3

B3

=

clinterfaces between the SOFTWARE SvSTEM
and other SYSTEMS;

dl softw are-driven alarms. warnings. and
operatormessages;

&l SECURITY requirements;

flusability engineering requirements that are
sensitive to human errors and raining;

gl data definition and database requirements;

hlinstallation and acceptance requirements of
the delivered MEDICAL DEVICE SOF TWARE at
the

i] requirements related to methods of operation
and maintenance;

i user dacumentation to be developed:

k) user maintenance requirements; and

1) regulatory requirements.

|

|

|

Requirements
[Requirements
traceability; Section

2]

Uzing IBM Ration sl Fhapsody
for specifying the software
requirements and to establish
traceability

F.2 F fnclude FISK CONTROL The MANUFACTURER shallinclude RISK - x ®
o i CONTROL measures implemented in sofuw are
far
hardw are failures and potential softw are defects
in the requirements as appropriate to the
5.2 & Re—FURl A FE MEFRERE The MANUFACTURER shall re-EWALLUATE the 3 k3 3
BEVICE RISK ANAL Y SIS MEDICAL DEVICE RISK AMALYSIS when
saftw are requirements are established and
update it as appropriate.
5.2 5 Updare SYSTEM requirements | The MAHUFACTURER shall ensure that existing ® x ®
requirements, including SYSTEM requirements,
are re-EVALUATED and updated as appropriate
as aresult of the softw are requirements analysis
ACTIVITY.
5.2 8 Werifp softwars requirements | alimplement S STEM requirements including B3 3 B3
The MRS R FLRER shanl vani and’ those relating to RISK COMTROL,
Arceiment ha s sofieans raqeismeands: | b do nat contradict one anather; 3 E ®
) are etipressed in terms that avaid ambiguity; = ® =
of test oriteria and performance of tests 1o i ® %
determine whether the test criteris have been
met;
el ean be uniquely identified; and i s i
fl are raceable o SYSTEM requirements or 3 X 3
ather source.
5.3 Software 5.3 } Transfarm saftwars The MANUFACTURER shall transfarm the - k3 3 Madeliing [Saftw are | Using IBM Rational Fhapsody
architectural FEUHRSMERLS (LT I requirements for the MEDICAL DEVICE architectural for creating a software
design AR TELTURE SOFTWARE into a documented design; Section &. 3] | architectural design model
ARCHITECTURE that describes the software’s
stiucture and identifies the SOFTWARE ITEMS.
572 Develog an ARCFTECTURE The MANUFACTURER shall develop and - s i
Far the interfaces of SOFFWARE document an ARCHITECTURE for the interfaces
ITEMS between the SOFTWARE ITEMS and the
somponents extermnal ta the SOFTWARE ITEMS
[both software and hardw are), and between the
SOFTWARE ITEMS.
5.3 F Gpeciv funstional and If 2 SOFTWARE ITEM iz identified as SOUP, the - k3 3
performanee requirements of SGUP |MANUFACTURER shall specify functional and
Hem performance requirements far the SOUP item
that are necessary forits intended use.
5.7 Joecie SYITEM hardwars If 2 SOF TWARE ITEM iz idertified as SOUP, the - s i
and software reguived by SOUP tem |MANUFACTURER shall specify the SYSTEM
hardw are and softw are necessary to support the.
proper operation of the SOUP item,
5.3 5 ldentifo segregation The MANUFACTURER shallidentify the - - 3
Aceessary far FISK CONTROL segregation betw een SOFTWARE ITEMS that is
eszential to RISK CONTROL, and state how to
ensure that the segregation is effective.
528 Verifo sofewars althe ARCHITECTURE of the software - - ®
AR TECTLURE T implements SYSTEM and softw are requirements
MERNEIERL TEARER shall veseiti s daceamand | including thoze relating ta AISK CONTROL:
that bl the softw are ARCHTECTURE is able to - - i3
support interfaces betw een SOFTWARE ITEMS
and
between SOFTWARE ITEMS and hardw are; and
o) the MEDICAL DEVICE ARCHITECTURE - - i
supponts proper operation of any SOUP items.
5.4 Software 5. 4. 1 Refine SOFTwdRE The MANUFACTURER shall iefine the sofiware - b s = Modelling +IBM Rational Rhapsody = MISRA C: 2004 guidelines
detailed desian | AREHTECTURE inte SOFTWARE ARCHITECTURE wnil it is represented by [Software unit: software unitimplementation | = MISRA C++: 2005
LTS SOFTw ARE UNITS. Section 4.6] model + | guidelines
5 4.2 Bevelop detaided design far The MANUFACTURER shall develop and - - ® *Requirements- IEM Riational Rhapsody = |[BM Rational Rhapsody:
eaoh FEOFFeARE LNT document a detailed design for each basedtesting TestConductor AddOn Simplified C execution
SOF T ARE LIMIT of the SOF TW/ARE ITEM, [Softw sre unit provides all needed concepts | framew ork (SMAF]
5 4 F Pevelop detaied desigrn far The MAMUFACTURER shall develop and — — o design; Section for test case specification, - |BM Rational Rhapsody:
incerfaces document a detailed design for any interfaces 452] + [execution and test Simplified C-++ execution
between the SOFTWARE UMIT and external Guidelines far management framew ork [SXF)
components (hardw are of safware), aswell as madeling and -MISRA C: 2004 guidelines = 3rd party taols for guideline
any interfaces between SOFTWARE UNITS. woding and *MISRA C++ 2008 guidelines | checking on code level
5 4.4 Wiy detailed design =) implements the softw are ARCHITECTURE, — — i guideline checking |+ IBM Rational Rhapsody
e ML TERER shait ventis amd = = = [Sectiond.4.4.7) |Enabling the generation of
ovtemiant that the sofiveans dbtaa dasin MISRA compliant cods
+IBM Rational Rhapsady:
SafetyCriticalF orCDevelopers
setting .
IBM Rational Fhapsody:
SafetyCriticalForC++Develope
bliz free from cortradiction with the software 15 setting
ARCHITECTURE. - IBM Ratioral Rhapzady:
5.5 SOFTWARE |55 Vimplemenr cach SOFTWARE The MANUFACTURER shallimplement each ® E x =Code Generation [+ IBM Rational Rhapsody = [BM Riational Rhapsody
UNIT LT SOFTwARE LMIT. [Section 4.5] UMLISy=ML provides all UMLISyshL provides all
implementation |5 &7 Forshlich SEHFThARE LVIT The MANUFACTURER shall establish strategies, - = X - Requirements- needed concepts to establish, | needed concepts
and verification | yEmEya HON PROCESS methods and pracedures for verlfying each basedtesting veport and verify requirements |+ [BM Riational Fhapsody
SOFTwARE UNIT. Where WERIFICATION is done [Saftw are unit tracesbility and ta develop provide all needed concepts
by testing, the test procedures shallbe implementatian; source code o generate code matching
EWALUATED for conectness. Section d.5.2] +IBM Riaticral Fhspsody the principles
55,3 SOFTWARE LT acceptance | The MANUFACTURER shall establish — 3 X * Requirements pravides features supperting
arfteria acceptance oriteria for SOFTWARE UNITS prior tracesbility and the process of verification and
tointegration requirements validation including raceabilit
into larger SOFTWARE ITEMS as appropriate, COuVErage from requirements to madel to
and ensure that SOFTWARE UNITS meet measurement codetotest cases
[Sectiond.2,4.5.3)
5.5 & deddrionsl SOFTWARE LWT | 3) proper svent sequence; - - " * Structural
ACEELIAAGE CIRENI bl data and contral flow; - - X couerage
it prasant i the desin, the <l planned resource allocation; - - x messurement for
AL TLRER shad inolade 22i8bona [d)faulthandiing (eror definition, isolation, and - - X model andlar code
FOCRPAINCE RSN F5 SDDRIDE recovenyl; [Section 4 5.4,
elinitialisation of variables: X 4.8.2)
f) sel-diagnostics, %
g) memory management and memony overflon s - - 3
and
hl boundary conditions. i - X
555 SOFTWARE MWT The MANUFACTURER shall perform the - b s
VERIFILA FION SOFT ARE UMIT VERIFICATION and document

the results

5.6 Software F.E. Vnregrare SOFTARE LNVITS The MANUFACTURER shallintegrate the -- ® E +Code Generation |+ IBM Rational Rhapsody +IBM Rational Rhapsody
integration and SOFTWARE UNITS in accordance with the [Section 4.6] TestConductor 4ddOn provide all needed concepts
integration integration plan * Requirements- provides 3l needed concepts |t integrate. compile, link,
testing 582 Herife softwars tegration a)the SOFTWARE UMITS have been integrated - B3 E3 based testing Far test case specification, andtest code
T MAALAHE FLRER il coonifr s into SOFT'W'ARE ITEMS and the SOFTWARE [Sioftware unit execution snd test *IBM Rational Fhapsady
razond e Aalowing aspeces of the sofirare [SYSTEM, and implementation; management TestConductor AddOn
g i1 aeeondanes wih e blthe hardw are items, SOFTWARE ITEMS, and - i ES Section 4.5.2) - IBM Rational Rhapsady supparts SIL and PIL testing
intgatinn ot support for manusl eperations fe.g.. “Requiremerts | TestConductar AddOn +|BM Rational Fhapsady
humanequipment interface, on-line help menus,| tracesbitysnd | supponts back-to-back testing | TestConductar Addiin
speechrecagrition, voice cantiol) of the requiremerts MIL <> SIL suppons back-to-back
SYSTEM coverage testing SIL <> PIL
5.6.F Fest imtegrated softears The MANUFACTURER shall test the integrated - i b MmeasUrement
SOFTWARE ITEMS in sccordance with the (Sectiond.2,4.5.3)
integration plan and document the results. * Structural
5.6, ¢ Integration iesting conieni For softw are integration testing, the - ks = coverage
MANUFACTURER shall address whether the measurement for
inteqrated SOFTWARE ITEM performs a5 model andfor code
56,5 Werify infegration fest The MARNUF ACTURER shall EVALUATE the = 3 = Efg Zt]‘“" 454
procedures integration test pracedures for comrectness. o
F & 8 Conduct regression tesis ‘wWhen saftware items are integrated, the - 3 =
MANUFACTURER shall conduct REGRESSION
TESTING appropriate to demonstrate that
defects have not been introduced intoe
previously integrated
5.8 T lntegratian test record a) document the test result (pazsifail and a list of - 3 E3
contenis T MAALAHETLRER | ANOMALIES),
shad b) retain sufficient recards ta permit the test ta be| - ® ES
repeated; and
clidentify the tester. - X K
58 &k software praklem The MANUFACTURER shall erter ANOMALIES - 3 E
resolution PROCESS found during softw are integration and
integration
testing into a saftw are problem resalution
5.7 SOFTWARE | 5 7 1 Establish tests for seftware The MANUFACTURER shall establish and -- i3 Ej - Requirements- -IBM Rational Rhapsody - IBM Rational Rhapsady
SYSTEM testing | requirements perfarm 5 zet of tests, expressed as input stimuli, basedtesting TestCandustar Add0n TestConductor AddOn
enpected outcomes, passifal oriveria and (Sectiond.5.2] pravides all needed concepts | suppants software sustem
procedures, for sondusting SOFTWARE “Requirements fortest case specification, | testing
SYWSTEM testing, such that all saftw are traceability and enecution and test
& L2 Use software problem The MANUFACTURER shall enter ANOMALIES -- ® » requirements management
resalution PROCESS found during softw are system testing into 2 coverage
softeare meazurement
5. 7R Rerest after changes alrepeat tests, perform modified tests or perform - i3 E] (Sectiond.2.4.5.3)
htusn e ane macta dining additionaltests, sz sppropriate, ta verify the
SO ThelRE Sy STEM eosaing. the effectiveness of the change in corecting the
MR TR aha problem;
b) conduct testing appropriate to demanstrate - 3 =
that unintended side effects have not been
introduced: and
o) perform relevant RISK MANAGEMENT - ® Ej
ACTIMITES as definedin 7.4.
&, 7. o Verifo SOFTWARE SYSTEM a)the VERIFICATION stategies and the test - ® E
festing The MAALEACTLRER shat procedures used are appropriste;
cannlfr it b) SOFTWARE S STEMtest procedures trace - 3 E
to softw are requirements;
o) all saftw sre requirements have been tested ar - 3 E
othervise VERIFIED: and
5. L5 SOFTwaRE SYSTEM rest a)document the test result [pazsifail and a list of - i b
record contents Tha MAALFACFURES | ANOMALIES),
shal blretain sufficient records to permit the test to be| - % X
repeated; snd
clidentify the tester. - = ~
5.8 Software 5.8 1 Ensare sofiware VERTFICA TRON | The MANUFACTURER shall ensure that softw are - i b
release 5 camplets VERIFICATION has been completed and the
results EVALUATED before the software is
released
5.8 2 Document known resdual The MANUFACTURER shall document all knawn - 3 E
ANONRLIES residual AMOMALIES.
5.8 FECRLLATE krngwa residval The MANUFACTURER shall enzsure that all - i b
JET knownresidual AMOMALIES have been
EVALUATED tor
enzure that they do nat contribute to an
5.8 & Document released The MANUFACTURER shall document the x ® E
WERSIONST VERSION of the SOFTWARE PRODUCT thatis
beingreleased.
5. &5 Document haw refeased The MANUFACTURER shall document the -- ® E
softwars was created procedure and environment used ta create the.
released software,
F. &8 Ensure aotivitics and tasks are | The MANUFACTURER shall ensure that all -- ® E
complete ACTIVITIES and TASKS are complete along with
allthe associated documentation,
F.& F Archive saftware The a)the SOFTWARE PRODUCT and - ® E
MR TR shal anzfria CONFIGURATION ITEMS; and
determined as the langer af: the life time of the. - ® E
device as defined by the MANUFACTURER or 2
time specitied by relevant regulatar
requirements
588 Assure repestabiity of procedures to ensure that the released - ® =
safewars release SOFTWARE PRODUCT

can be reliably delivered to the point of use
without coruption or unauthorised change.
These

procedures shall address the production and
handling of media containing the SOFT'WARE
PRODUCT inchuding as sppropriate:
~replication,

- media labeling,

- packaging.

- protection,

- storage, and

- delivery.

Figure 21: IEC 62304 mapping to the Rhapsody Reference Workflow

5.4 EN 50128

The mapping between EN 50128 and the IBM Rational Rhapsody Reference Workflow will
be provided in future versions of this document.

Appendix A: List of Figures

Figure 1: Activities of the IBM Rational Rhapsody Reference Workflow..................ccoeeeee 8
Figure 2: Process for Determining the Tool Confidence Level.............ccccoooviiiiiiiiiins 10
Figure 3: Determining the Tool Confidence Level...........ccoooviiviiiiiiiiiii e, 10
Figure 4: TCL1 for IBM Rational RNapsody ..o 11
Figure 5: TCL3 for IBM Rational Rhapsody TestConductor Add On..........ccccceeeevieeeeneeennns 12
Figure 6: Variation of the IBM Rational Rhapsody Reference Workflow without Model

N ITTICALION L.ttt 14
Figure 7: IBM Rational Rhapsody Configuration with instrumentation mode set to
“‘Animation”. Such a configuration can be used in order to simulate the model. 19

Figure 8: By simulating the model, one can step through the behavior of the model, and
one can inspect values of model variables (e.g. values of attributes) during the simulation

8 PP 20
Figure 9: Requirements based teSHINGciiei e e e e e e 21
Figure 10: REQUIFEMENTS COVEIAGEcci i i 22
FIQUre 11: MOl COVEIAQEuuuiiieeeiieeee et e e e e s e e e e e e e e et e e e e e e eeeeennes 23
Figure 12: Creating a new model with safety-related settings.............cccceeeeeeii e, 25
Figure 13: Different code generation configurations (MiL, SiL, and PiL).................ccceeeen. 27
Figure 14: Back-t0-back teStiNgcoooeiiiiiie e 28
FIQUIE 15: COOE COVEIAQE ...uvvuuiiieeeeeeeeeitie et e e e e ettt e e e e e e e e e e et e e e e e e e e eeeaaaa e e aaeeeeeeannes 29
Figure 16: Overview of ISO 26262 software development reference process................... 30
Figure 17: 1ISO 26262 mapping to the Rhapsody Reference Workflow......................coe. 33
Figure 18: Overview of IEC 62304 software development reference process 35

Figure 19: IEC 62304 mapping to the Rhapsody Reference Workflow............................. 38

Appendix B: List of References

1. Functional safety of electrical/electronic/programmable electronic safety-related
systems, IEC 61508, Edition 2.0. 2010.

2. Road vehicles — Functional Safety, International Organization for Standardization, ISO
26262. 2011.

3. IBM Rational Rhapsody TestConductor AddOn. [Online]
http://www-01.ibm.com/software/awdtools/IBM Rational Rhapsodyy/.

4. 1BM Rational Rhapsody TestConductor Add On Reference Workflow Guide.
5. UML Testing Profile, OMG, June 2011. [Online] http://www.omg.org/spec/UTP/1.1/PDF/.
6. IBM Rational IBM Rational Rhapsody TestConductor Add On User Guide.

7. MISRA-C: 2004 - Guidelines for the use of the C language in critical systems, MIRA
Limited. 2004.

8. MISRA-C++: 2008 - Guidelines for the use of the C++ language in critical systems,
MIRA Limited. 2008.

9. Medical device software — Software life cycle processes, IEC 62304 Edition 1.0, 2006.
10. Railway Applications: Software for Railway Control and Protection Systems, EN

50128,
2011.

